ZIJIE LI

Zijieli@andrew.cmu.edu | SPersonal Website

EDUCATION

Ph.D. in Mechanical Engineering,

Topic: AI for Science, *Advisor: Amir Barati Farimani* Carnegie Mellon University, GPA: 4.00/4.00

B.E. in Theoretical and Applied Mechanics, Sun Yat-sen University, GPA: 3.91/4.00

January, 2020 - March, 2025 (expected)

August, 2015 - May, 2019

WORKING EXPERIENCE

Research intern on diffusion models,

- 1. Diffusion feature extraction for multi-modal tasks Extract visual representations from pretrained state-of-the-art diffusion model (PixArt, SD3) and benchmark their performance on simple image understanding task like captioning.
- Turning text-to-image diffusion model (SD3 medium) into a image-text joint diffusion model Modify the MMDIT backbone of SD3 and finetune it with joint diffusion training (including visual instruction tuning), reach competitive performance on various vision-language benchmarks (VQAv2, POPE, MME, etc). [Preprint]
- 3. Training a 1.1B joint-diffusion model from scratch

Curate high quality data by filtering publicly available image-text dataset and generate synthetic captions. Training a customized MMDIT from scratch to do text-to-image generation (Geneval score: 0.39) and imageto-text understanding (around 60 percent accuracy on VQAv2-val 32-shot).

Mentor: Linjie Yang, Peng Wang TikTok, Seed-Image-Generation

May, 2024 - November, 2024

RESEARCH INTEREST

Neural PDE solver, Numerical simulation of PDEs and dynamical systems, Physics and numerical methods inspired design of neural networks, Diffusion models, Generative AI

PEER-REVIEWED PUBLICATIONS

(For the up-to-date publication list please refer to the Google scholar, * denotes equal contribution)

- Scalable Transformer for PDE surrogate modelling [Paper], [Code] Advances on Neural Information Processing Systems 2023 Zijie Li, Dule Shu, A. Barati Farimani
- Transformer for Partial Differential Equations' Operator Learning [Paper], [Code] Transactions on Machine Learning Research (2023)
 Zijie Li, Kazem Meidani, A. Barati Farimani
- Denoise Pre-training on Non-equilibrium Molecules for Accurate and Transferable Neural Potentials [Paper], [Code] Journal of Chemical Theory and Computation (2023) Yuyang Wang, Changwen Xu, Zijie Li, A. Barati Farimani
- A physics-informed diffusion model for high-fidelity flow field reconstruction [Paper], [Code] Journal of Computational Physics (2023)
 Dule Shu*, Zijie Li*, A. Barati Farimani

- 5. Hyena neural operator for partial differential equations [Paper], [Code] APL Machine Learning (2023) Saurabh Patil, **Zijie Li**, A. Barati Farimani
- Graph Neural Network Accelerated Molecular Dynamics [Paper], [Code] Journal of Chemical Physics (2022)
 Zijie Li, Kazem Meidani, Prakarsh Yadav, A. Barati Farimani
- TPU-GAN: Learning temporal coherence from dynamic point cloud sequences [Paper], [Code] International Conference on Learning Representations 2022
 Zijie Li, Tianqin Li, A. Barati Farimani
- 8. Prototype memory and attention mechanisms for few shot image generation [Paper], [Code] International Conference on Learning Representations 2022 Tianqin Li*, Zijie Li*, Andrew Luo, Harold Rockwell, A. Barati Farimani, Tai Sing Lee
- Graph neural network-accelerated Lagrangian fluid simulation [Paper], [Code] Computers & Graphics (2022)
 Zijie Li, A. Barati Farimani

CONFERENCE PRESENTATION

 Latent Neural PDE Solver for time-dependent system 37th Annual Conference on Neural Information Processing Systems, AI for Scier 	nce workshop
New Orleans, LA	December 2023
2. Factorized kernel attention for scalable PDE learning 76th Annual Meeting of the Division of Fluid Dynamics, Washington DC	November, 2023
3. Mesh-agnostic PDE Operator Learning with Attention American Physical Society (APS) March 2023, Las Vegas, NV	March, 2023
4. Accelerating Lagrangian fluid simulation with graph neural networks International Conference on Learning Representations 2021 SimDL workshop, V	Virtual May, 2021
5. Graph Neural Network for Lagrangian Fluid Simulation 73th Annual Meeting of the Division of Fluid Dynamics, Virtual	November, 2020
INDUSTRIAL COLLABORATION	
Transformer-based neural operator(with Nvidia)SContributing attention-based kernel integral and Transformer utilities to the open-sol	September, 2023 - May, 2024 <i>urce library:</i> neuraloperator.
Physics-informed diffusion model (with Nvidia) Contributing physics-informed diffusion to Nvidia's physics+machine learning librar	October, 2023 - March, 2024 <i>y: <mark>Modulus</mark>.</i>
Neural operator for reaction-diffusion simulation (with KLA Tencor) Febru Created a differentiable simulation pipeline for simulating reaction-diffusion data a neural operator surrogates with physics-informed loss.	•
BOOK CHAPTERS	
Graph Neural Networks for Molecules A chapter for book "Machine Learning in Molecular Sciences" published by Springer	Nature

Yuyang Wang, Zijie Li, Amir Barati Farimani

TEACHING EXPERIENCE

Teaching Assistant 24889 (Online certificate course): Deep learning for engineers

SERVICE

Reviewer:

Conference: NeurIPS, ICLR, ICML Journal: Nature Machine Intelligence, IEEE Transactions on Neural Networks and Learning Systems, Transaction on Machine Learning Research

SKILLS

Programming: Python, Fortran, C++

Package: PyTorch, Deep Graph Library, Pytorch Geometric, Numba, Phiflow, OpenMM, JAX, JAX-MD, FENICS **Language**: Mandarin (native), English (proficient)

SELECTED COURSEWORKS

Deep reinforcement learning and control, Numerical methods, Computer vision, Introduction to machine learning, Introduction to deep learning, Learning-based image synthesis, Engineering computation (C++), Computational fluid dynamics, Finite element analysis, Molecular simulation for materials